259 research outputs found

    Totally Corrective Multiclass Boosting with Binary Weak Learners

    Full text link
    In this work, we propose a new optimization framework for multiclass boosting learning. In the literature, AdaBoost.MO and AdaBoost.ECC are the two successful multiclass boosting algorithms, which can use binary weak learners. We explicitly derive these two algorithms' Lagrange dual problems based on their regularized loss functions. We show that the Lagrange dual formulations enable us to design totally-corrective multiclass algorithms by using the primal-dual optimization technique. Experiments on benchmark data sets suggest that our multiclass boosting can achieve a comparable generalization capability with state-of-the-art, but the convergence speed is much faster than stage-wise gradient descent boosting. In other words, the new totally corrective algorithms can maximize the margin more aggressively.Comment: 11 page

    A bibliometric analysis on discovering anti-quorum sensing agents against clinically relevant pathogens: current status, development, and future directions

    Get PDF
    BackgroundQuorum sensing is bacteria’s ability to communicate and regulate their behavior based on population density. Anti-quorum sensing agents (anti-QSA) is promising strategy to treat resistant infections, as well as reduce selective pressure that leads to antibiotic resistance of clinically relevant pathogens. This study analyzes the output, hotspots, and trends of research in the field of anti-QSA against clinically relevant pathogens.MethodsThe literature on anti-QSA from the Web of Science Core Collection database was retrieved and analyzed. Tools such as CiteSpace and Alluvial Generator were used to visualize and interpret the data.ResultsFrom 1998 to 2023, the number of publications related to anti-QAS research increased rapidly, with a total of 1,743 articles and reviews published in 558 journals. The United States was the largest contributor and the most influential country, with an H-index of 88, higher than other countries. Williams was the most productive author, and Hoiby N was the most cited author. Frontiers in Microbiology was the most prolific and the most cited journal. Burst detection indicated that the main frontier disciplines shifted from MICROBIOLOGY, CLINICAL, MOLECULAR BIOLOGY, and other biomedicine-related fields to FOOD, MATERIALS, NATURAL PRODUCTS, and MULTIDISCIPLINARY. In the whole research history, the strongest burst keyword was cystic-fibrosis patients, and the strongest burst reference was Lee and Zhang (2015). In the latest period (burst until 2023), the strongest burst keyword was silver nanoparticle, and the strongest burst reference was Whiteley et al. (2017). The co-citation network revealed that the most important interest and research direction was anti-biofilm/anti-virulence drug development, and timeline analysis suggested that this direction is also the most active. The key concepts alluvial flow visualization revealed seven terms with the longest time span and lasting until now, namely Escherichia coli, virulence, Pseudomonas aeruginosa, virulence factor, bacterial biofilm, gene expression, quorum sensing. Comprehensive analysis shows that nanomaterials, marine natural products, and artificial intelligence (AI) may become hotspots in the future.ConclusionThis bibliometric study reveals the current status and trends of anti-QSA research and may assist researchers in identifying hot topics and exploring new research directions

    Humic Substance Photosensitized Degradation of Phthalate Esters Characterized by 2H and 13C Isotope Fractionation

    Get PDF
    The photosensitized transformation of organic chemicals is an important degradation mechanism in natural surface waters, aerosols, and water films on surfaces. Dissolved organic matter including humic-like substances (HS), acting as photosensitizers that participate in electron transfer reactions, can generate a variety of reactive species, such as OH radicals and excited triplet-state HS (3HS*), which promote the degradation of organic compounds. We use phthalate esters, which are important contaminants found in wastewaters, landfills, soils, rivers, lakes, groundwaters, and mine tailings. We use phthalate esters as probes to study the reactivity of HS irradiated with artificial sunlight. Phthalate esters with different side-chain lengths were used as probes for elucidation of reaction mechanisms using 2H and 13C isotope fractionation. Reference experiments with the artificial photosensitizers 4,5,6,7-tetrachloro-2′,4′,5′,7′-tetraiodofluorescein (Rose Bengal), 3-methoxy-acetophenone (3-MAP), and 4-methoxybenzaldehyde (4-MBA) yielded characteristic fractionation factors (−4 ± 1, −4 ± 2, and −4 ± 1‰ for 2H; 0.7 ± 0.2, 1.0 ± 0.4, and 0.8 ± 0.2‰ for 13C), allowing interpretation of reaction mechanisms of humic substances with phthalate esters. The correlation of 2H and 13C fractions can be used diagnostically to determine photosensitized reactions in the environment and to differentiate among biodegradation, hydrolysis, and photosensitized HS reaction

    Coupling Dynamic Behavior Characteristics of a Spacecraft Beam with Composite Laminated Structures and Large-Scale Motions

    Get PDF
    A nonlinear dynamic modeling method for a spacecraft body composed of a laminated composite beam undergoing large rotation is proposed in this paper. To study the characteristics of a laminated composite beam attached to a spacecraft body for the dynamic systems, the deformation description of a laminated beam is established with the consideration of laying angles and laying layers, and the displacement-strain relations is acquired based on the global-local higher-order shear deformation theory. Accordingly, a nonlinear dynamic model of the spacecraft body composed of a laminated composite beam is deduced using Hamilton variational principle. And the complete coupling terms for the laminated material properties are considered unlike any other singular or unidirectional materials. Then, the dynamic behavior of the spacecraft system is analyzed by comparison of an orthogonal-symmetric, singular, and unidirectional laminated beam. The results show that the laminated composite structures have significant influences on the dynamics properties of spacecraft compared with conventional equivalent singular or unidirectional materials. Hence, the nonlinear model is well suitable for approaching the problem of coupling relationship between geometric nonlinearity and large rotation motions. These conclusions will have significant theory and engineering practice values for coupling dynamics properties of laminated beams

    Cefquinome Controlled Size Submicron Particles Precipitation by SEDS Process Using Annular Gap Nozzle

    Get PDF
    An annular gap nozzle was applied in solution enhanced dispersion by supercritical fluids (SEDS) process to prepare cefquinome controlled size submicron particles so as to enhance their efficacy. Analysis results of orthogonal experiments indicated that the concentration of solution was the primary factor to affect particle sizes in SEDS process, and feeding speed of solution, precipitation pressure, and precipitation temperature ranked second to fourth. Meanwhile, the optimal operating conditions were that solution concentration was 100 mg/mL, feeding speed was 9 mL/min, precipitation pressure was 10 MPa, and precipitation temperature was 316 K. The confirmatory experiment showed that D50 of processed cefquinome particles in optimal operating conditions was 0.73 μm. Moreover, univariate effect analysis showed that the cefquinome particle size increased with the increase of concentration of the solution or precipitation pressure but decreased with the increase of solution feeding speed. When precipitation temperature increased, the cefquinome particle size showed highest point. Moreover, characterization of processed cefquinome particles was analyzed by SEM, FT-IR, and XRD. Analysis results indicated that the surface appearance of processed cefquinome particles was flakes. The chemical structure of processed cefquinome particles was not changed, and the crystallinity of processed cefquinome particles was a little lower than that of raw cefquinome particles

    Preparation of Cefquinome Nanoparticles by Using the Supercritical Antisolvent Process

    Get PDF
    The supercritical antisolvent process was used successfully to prepare nanoparticles of cefquinome. These particles were observed by scanning electron microscope (SEM) and their average diameter was measured by laser particle size analyzer. In the experiments, dimethyl sulfoxide (DMSO) was selected as solvent to dissolve cefquinome sulfate. It was confirmed by orthogonal experiments that the concentration of solution was the primary factor in this process followed by feeding speed of solution, precipitation pressure, and precipitation temperature. Moreover, the optimal conditions of preparing nanoparticles of cefquinome by supercritical antisolvent process were that solution concentration was 100 mg/mL, solution flow speed was 1.5 mL/min, operating pressure was 13 Mpa, and operating temperature was 33°C. Confirmatory experiment was conducted under this condition. It was found that the appearance of particles was flakes and the average diameter of particles was 0.71 microns. Finally, influence law of individual factor on particle size was investigated by univariate analysis

    Effect of different regions on fermentation profiles, microbial communities, and their metabolomic pathways and properties in Italian ryegrass silage

    Get PDF
    IntroductionItalian ryegrass is less studied in northern China due to high-quality forage grass has not been fully utilized. Full utilization of high-quality forage grass helps to alleviate the shortage of forage grass in winter and spring season and guarantee stable development of livestock production. Consequently, this study was aimed to evaluate the effects of different regions in northern China on the fermentative products, bacterial community compositions, and metabolic pathways and metabolites of Italian ryegrass silage.MethodsThe Italian ryegrass was harvested from three regions (Ordos-WK; Hohhot-AK; Ulanqab-SYK) and ensiled for 60 days. Single molecule real-time (SMRT) sequencing and ultra-high performance liquid chromatography-mass spectrometry (UHPLC–MS/MS) were used to analyze bacterial communities and metabolites, respectively.ResultsAfter 60 d of fermentation, the SYK group had the lowest pH (4.67), the highest lactic acid contents (95.02 g/kg DM) and largest lactic acid bacteria populations (6.66 log10 cfu/g FM) among the treatment groups. In addition, the SYK group had the highest abundance of Lactiplantibacillus plantarum (63.98%). In SYK group, isoquinoline alkaloid biosynthesis was the significantly enriched (p < 0.05) and high-impact value (0.0225) metabolic pathway. In AK group, tryptophan metabolism the was the significantly enriched (p < 0.001) and high-impact value (0.1387) metabolic pathway. In WK group, citrate cycle (TCA cycle) was the significantly enriched (p < 0.001) and high-impact value (0.1174) metabolic pathway. Further, Lactiplantibacillus plantarum was positively correlated with cinnamic acid, tetranor 12-HETE, D-Mannitol, (2S)-2-amino-4-methylpentanoic acid L-Leucine, guanine, isoleucyl-aspartate and 3,4-Dihydroxyphenyl propanoate, but negatively correlated with isocitrate and D-mannose.DiscussionIn conclusion, this study can improve our understanding of the ensiling microbiology and metabolomics in different regions to further regulate the fermentation products and promote livestock production
    • …
    corecore